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ABSTRACT 

Exposure to harsh environments during storage, 

transportation, and handling can have significant effect on 

various system assets, making it important to understand the 

full life-cycle exposure of sensitive equipment.  To quantify 

a system’s status timeline, a wireless, intelligent, low-power 

life-cycle monitoring device is being developed.  No current 

monitoring systems have the capability to measure 

environmental conditions experienced by an asset and use 

that data to determine time spent in various states such as 

storage, transportation, handling and deployment.  The sensor 

system being developed will employ a multi-modal sensing 

approach that will provide on-device analysis of the various 

parameters such as acceleration, temperature, and other 

environmental conditions for the duration of asset storage, 

handling, and distribution.  Extremely low power and 

potentially easy to integrate into existing platforms, the 

monitoring system will include on-system intelligence for 

distinguishing between different statuses and is designed to 

use reliable, wireless, low-profile, and inexpensive sensing 

technologies.  Embedded system intelligence is designed to 

use collected datasets to accurately quantify the asset’s 

current status and the amount of time spent within each state.  

The ability to monitor critical parameters and use them to 

classify this status throughout the asset’s life-cycle could 

provide some of the diagnostic information that would 

facilitate condition based maintenance.  Engineers and 

operators can review exposure conditions and analyze how 

status and exposure effects contribute to the current condition 

of their equipment.  The monitoring system will provide 

maintainers additional data points in assessing the historical 

use of the system. 

 

1. INTRODUCTION 

To better understand storage and handling conditions of high-

value assets, there have been significant advances in in-situ 

sensors to monitor external effects throughout an 

equipment’s life-cycle.  Microelectromechanical systems 

(MEMS) accelerometers have been used to measure vibration 

and its effects on assets, but there is no sensor system 

available that can also track the amount of time spent within 

storage, transportation/handling, and in deployment.  

Extended exposures to varying environments during storage 

and transportation can impact high value electromechanical 

systems; therefore, it is of interest to fully comprehend the 

full lifecycle exposure of sensitive equipment (Ivce, R., 

Jurdana, I., Mohovic, R., 2011). There have been studies that 

track the conditions experienced by equipment for individual 

shipments (SenseAware, 2009) (Midè, 2016), but there 

currently is no solution that monitors this information 

throughout the full lifespan of an asset, tracking how long it 

has spent in differing states, both before and after shipment.  

To assess status timelines and to potentially use this 

information to facilitate reduction in associated maintenance, 

an intelligent, low-power, easily retrofitted asset life-cycle 

status monitoring device (AssetLife) is being developed.  

Environmental parameters such as temperature and relative 

humidity could play a major role in long- and short-term 

aging effects of components including casings, sealants, and 

electronics.  The AssetLife sensor system will monitor 

environmental factors experienced by the asset over its entire 

lifetime, including vibration profiles, temperature, relative 

humidity, light intensity, and pressure.  These parameters are 

designed to be combined using sensor fusion algorithms to 

correctly quantify the time spent in storage, 

transportation/handling, and in operation.  With this 

enhanced visibility into life-cycle conditions, maintainers 

will be able to assess equipment usage more efficiently.  The 

developed sensing system will be extremely low power to 

ensure extended lifetime with limited power resources and 

include on-system intelligence for distinguishing between 

various storage or transportation conditions.  The system uses 
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small, reliable, inexpensive system components to enable 

ease of integration into existing and future platforms.   

2. BACKGROUND 

Throughout the lifetime of many fielded medical, military, 

and exploration systems, equipment may undergo various 

states of storage (indoor/outdoor/in container), handling 

(mechanical or human lifts), and transportation (ground or 

aircraft).  During this time, assets are exposed to varying 

environmental and physical effects that can induce 

degradation (Muszynska, A., 1994) (Kramb, V., Hoffman, J., 

Johnson, J., 2003).  With the emergence of cheap, readily 

accessible, small, low power MEMS accelerometers many 

wearable devices have been implemented to track human 

activity (Kim, Y., Kang, B., Kim, D., 2015) (Li, Z., Wei, Z., 

Yue, Y., Wang, H., 2011), but there is no sensor solution that 

is capable of predicting the activity of equipment when in 

states such as storage, handling and transportation.  Sensors 

exist that monitor vibration and a limited set of environmental 

effects such as temperature (SenseAware, 2009) (Midè, 

2016), but no sensors have been able to log time spent in 

various life-cycle states.  To better understand the handling 

and storage of these systems and its long term effects on the 

system, it is necessary to create a non-invasive life-cycle 

status monitoring device to monitor various parameters 

experienced, and to generate a reliable status timeline. 

The developed sensor node will enable a simple, inexpensive 

and maintenance-free tool to provide valuable insight into the 

conditions and their respective durations that valuable assets 

are exposed to throughout their life-cycle.  The system 

provides a means for long-term monitoring of high value 

assets without increased labor burden and could ultimately 

result in improved storage and handling processes.  The 

multi-modal sensing aspect of the proposed sensor system 

should provide an enhanced level of visibility to categorize 

and quantify times within various states.    

The long term impact of this development effort will include 

a means for health diagnostics of a vast array of electronic 

and mechanical systems under exposure to a wide range of 

handling and ambient conditions.  To provide a 

comprehensive solution to this problem, the sensor node must 

be a fully robust system capable of monitoring a suite of 

conditions including vibration, temperature, light, relative 

humidity, and barometric pressure.   

2.1.1. Vibration Effects 

Vibration and shock effects have been proven to negatively 

impact mechanical systems (Muszynska, A., 1994).  

Vibration can cause damage to electronics and enclosures 

which could lead to unserviceability or critical failure upon 

deployment.   

2.1.2. Environmental Effects 

Environmental parameters such as temperature, relative 

humidity, and UV exposure each play a major role in long- 

and short-term aging effects of system components including 

casings, sealants, and electronics (Kramb, V., Hoffman, J., 

Johnson, J., 2003).  High relative humidity can cause 

corrosion, electrolysis, and moisture absorption, introducing 

conductivity within insulators that reduces both mechanical 

and electrical reliability in certain systems.  If subjected to 

high temperatures for extended periods of time, subsystem 

components could be prone to oxidation, structural changes, 

softening, and physical expansion.  With overexposure to UV 

radiation, embrittlement and chemical reactions could occur, 

causing surface deterioration and alteration of electrical or 

mechanical properties.  Alone, these three environmental 

factors could greatly affect subsystems, but when combined, 

deterioration of the system could be accelerated.  For 

example, increased relative humidity or temperature could 

intensify the degradation effects of UV radiation on organic 

materials within some devices or structures. 

3. SYSTEM DESIGN  

The development of an intelligent, low-power health 

monitoring system carries with it a wide array of technical 

challenges that must be overcome to provide a suitable 

solution for equipment owners and maintainers.  First and 

foremost, development of an ultra-low power system capable 

of continuous operation requires a unique design, optimized 

using the appropriate components and operational 

methodology.  Additionally, selection and implementation of 

suitable sensor technologies is critical for obtaining highly 

accurate and repeatable measurements while maintaining 

ultra-low power consumption operations.  Finally, efficient 

evaluation of operational status using embedded data and 

classification algorithms could provide insights into the 

system state and current usage of the monitored asset. 

3.1. Ultra-Low Power System Design 

Development of a micro-power monitoring system requires a 

design methodology that takes all components of the system 

into account, including the microcontroller, communications 

interface, long- and short-term memory, and analog 

interfaces.  Selecting an appropriate microcontroller is the 

first step in designing a low power system that incorporates 

all of the requirements.  The selected microcontroller is an 

ultra-low power microcontroller capable of operating at ~100 

μA/MHz in its highest power state, allowing for much lower 

power consumption at lower clock speeds.  Additionally, the 

device contains on-chip non-volatile memory, negating the 

need for peripheral memory components within the system.  

The microcontroller has been coupled with sensors to obtain 

measurands of interest in an early-stage system prototype 

(Figure 1). 
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Figure 1.  Initial AssetLife system prototype. 

3.2. Sensor Fusion Algorithm Measurands 

The sensors being considered for the sensing system can be 

categorized into three different sections: atmospheric 

sensors, dynamic sensors, and light intensity sensors.  In each 

of the sensor categories, the sensors have been characterized 

based on power consumption, accuracy, operation range, and 

dimensional footprint.  Other modalities such as position 

(GPS), inertial movement, volatile organic compounds, gas 

(SO2, NO2, etc.) and corrosion environment sensors are 

currently being researched but have not yet been applied to 

the AssetLife sensing system.  

3.2.1. Atmospheric Sensor 

The selected environmental sensor is able to measure 

atmospheric conditions such as relative humidity, 

temperature and barometric pressure.  Measurement of 

barometric pressure will be a key factor distinguishing 

between ground and air transport.  Common ranges that are 

available from commercial sensors span from 0-100% (RH), 

-40 to 185°F (temperature), and 300-1,100 mbar (pressure). 

3.2.2. Dynamic Sensors 

A vibration sensor is used to provide an indication of when 

equipment is being handled or transported.  Along with 

measuring vibration during normal timed intervals, the 

AssetLife accelerometer is responsible for “waking up” the 

sensing system when shock/vibration events are experienced 

by the asset. 

3.2.3. Light Intensity Sensors 

Two light intensity sensors were also chosen to be a part of 

the sensing system: a lux sensor and ultraviolet (UV) optical 

sensor.  The lux sensor measures the intensity of visible light, 

while the UV sensor measures only in the 290-400 nm 

wavelength spectrum.  The lux measurement detects ambient 

light, representative of what the human eye captures, helping 

to differentiate where an asset is stored.  UV intensity will 

give another useful data point in differentiating whether an 

asset is stored indoors or outdoors. 

3.3. Embedded Intelligence 

A primary function of this system is to make a determination 

of the time that assets spend in various states, such as storage, 

handling, general transport, and in usage.  The embedded 

intelligence is also able to track any dynamic vibration or 

shock events that may be experienced during transport or 

handling.  Additionally, system intelligence must be designed 

to allow for optimal operations of the monitoring system 

itself to minimize power consumption, maximize system 

lifetime, and provide the most valuable information to users.  

The initial system prototype uses threshold values to identify 

critical features from the physical and environmental data 

that are most useful in quantifying asset status.  When 

thresholds are exceeded in any of the measurement features, 

the embedded algorithm assigns a specific status label related 

to that feature combination.  If the algorithm deems the event 

a change in status, the sensing system will log the measured 

data, time stamp, and maximum and minimum exposures for 

each measurement channel.   

3.3.1. Sensor Fusion Algorithms 

The sensing system will identify exposure timelines and 

under what environmental conditions the system operates for 

its entire lifetime.  This status timeline data can then be given 

to operators and maintainers to be used to determine usage of 

the system.  Defining usage of an asset is a complex 

application requiring multisensory measurements with 

classification algorithms to confidently and accurately define 

when the asset is in each of its possible storage or handling 

conditions.  Preliminary algorithms were developed to 

demonstrate this concept, and rely on a decision tree structure 

for status classification (Figure 2).   

 

Figure 2.  Preliminary structure of classification tree method 

to classify asset status. 

Each parameter measured is categorized with thresholds, and 

then used as input into a decision matrix.  Based on 

comparisons with the measurement history and current 

measured parameters, the embedded algorithm has sufficient 

information to classify the state of the system of interest.  The 

accuracy of this approach is related to the extent of real world 

data collected from known states (indoor storage, loading 

dock, ground transport, etc.) that are used to train machine 

learning algorithms to establish rules within the classification 

method.  Preliminary test data has been collected from a 

physical simulator and was processed using data streaming 

from a prototype sensing system.  An extensive test regime is 

planned in future research and will provide data to simulate 

various storage, handling, and transport conditions to create 

a highly accurate and detailed decision matrix.   
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3.3.2. Initial Classification Algorithm 

For preliminary demonstration purposes, the initial 

classification algorithm uses a hierarchical approach, 

beginning with the barometric pressure/altitude measurement 

being the first criteria to pass through, followed by 

acceleration with a subcategory of impact or transport, and 

finally a last check of UV and temperature together to provide 

the last decision criteria.  Though altitude was used in this 

preliminary classification algorithm, in its final 

implementation the algorithm will look at a combination of 

barometric pressure and vibration effects to differentiate 

ground and air transport.    

The initial classification algorithm is shown graphically in 

Figure 3 with selection criteria represented in the blue squares 

and red squares denoting the possible states.  The decision 

process begins with the topmost condition, and depending on 

whether the data denotes true or false, selects the path that 

identifies the current state of the system.   

 

Figure 3.  Decision criteria for initial testing. 

4. EXPERIMENTAL RESULTS 

After the initial sensor verification, the prototype system was 

attached to a test block and subjected to various conditions 

that an asset may be exposed to (Figure 4).   

 

Figure 4.  System mounted onto test block for simulation 

testing. 

The sensor system hardware collected data that was then 

processed through initial classification algorithms executed 

in LabView generated code.  A video camera was mounted 

to the test block/ as sensor data and system status were 

recorded (Figure 5).  This video data was later used to provide 

a ground truth for comparison with the algorithm predictions 

generated throughout testing. 

 

Figure 5.  Visualization of real time data collected on the 

test block (left) and the video feed (right) used for ground 

truth comparison. 

The full timeline of the simulated testing data collected from 

the sensors for this demonstration is shown in Figure 6.   

 

Figure 6.  Complete data set of initial status classification 

test data. 

The demonstration has been broken up into 7 phases, each 

showing a different status that the prototype system was able 

to classify.  These phases are explained in detail with 

representative data shown in Figures 8 through 16.  All data 

has been normalized to fit a 0-1 scale. 

Data collection began with the test block in a simulated 

storage environment from which it was carted outside in 

phase 1.  During transport there is a consistent vibration 

response that was measured in the accelerometer output, with 

spikes in acceleration when the cart hits large bumps in the 

floor that were picked up as high impact events (Figure 7).   
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Figure 7.  Phase 1 of initial testing showing high impact 

moment when hitting transition point in floor. 

Once outside in phase 2, the UV reading increases due to 

exposure to sunlight and the temperature indication 

decreased due to the colder outdoor temperature (Figure 8).  

The vibration profile during the asphalt transport is rougher 

than transport through the office, which is noticeable in the 

accelerometer data.  In phase 2 of the test, the system was 

able to recognize this as a transportation status with the 

constant acceleration loading.  When combined with the 

increase in UV level this indicates that the asset is outside.    

 

Figure 8.  Phase 2 of demonstration simulating outside 

transportation. 

In phase 3 the test block was loaded onto the bed of a 

transportation vehicle and secured, with the sensor system 

registering this as active/open air storage due to the 

temperature and UV change with no vibrations being picked 

up (Figure 9).   

 

Figure 9.  Phase 3 of demonstration simulating active/open 

storage. 

Phase 4 begins as the sensing system is able to detect engine 

vibration from the transport vehicle as it is cranked and 

motion begins from transport on local roads.  It can be seen 

that the vehicle had noticeable vibration effects, denoting the 

transportation state (Figure 10).   

 

Figure 10.  Phase 4 of demonstration simulating vehicular 

transportation of test block. 

Throughout testing, the sensing system tracked barometric 

pressures during vehicle transport that were converted to 

pressure-altitudes in post-processing.  Measurements were 

verified against the Google™ Maps altitude calculating tool 

(Figure 11).  The Google tracking tool outputs altitude versus 

distance while the sensor records altitude as a function of 

time.  Since vehicle speed varied slightly throughout this 

portion of testing, the altitude measurements do not match 

exactly, but they do provide very similar trends to verify that 

the system was accurately measuring and reporting 

barometric pressure.  The Google Maps altitude output was 

normalized to have a similar start altitude as the asset 

monitoring system.  
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Figure 11.  Verification of asset monitoring system altitude 

tracking abilities against an altitude route calculator from 

GOOGLE maps. 

After driving in phase 4, test block system was parked and all 

vibrations stopped, but UV was still present and the 

temperature was different from the storage temp, so the 

system was able to infer that it was in the active/open storage 

for phase 5 (Figure 12).   

 

Figure 12.  Phase 5 of demonstration simulating active/open 

storage after vehicle transportation. 

In phase 6 the simulation system was loaded onto a cart and 

wheeled back indoors into simulated storage, where a drop in 

UV is noticed coincident with an increase in lux due to the 

overhead lighting.  Temperature also begins to climb due to 

the warmer temperature setting indoors (Figure 13).  As the 

test block was manually transported back into the building 

and into storage, the system was able to register that the test 

block was in transportation mode due to the acceleration 

response recorded by the system. 

 

Figure 13.  Phase 6 of demonstration simulating 

transportation back to storage. 

Finally, in phase 7 the system is placed in simulated storage 

where the sensor readings stabilize and the sensor correctly 

classifies this as indoor storage (Figure 14). 

 

Figure 14.  Phase 7 of demonstration simulating storage in 

office. 

Using the initial classification tree algorithm presented in 

section 3.3.2, the AssetLife system was able to predict the 

status of the monitored system with 86.7% accuracy (Figure 

15).  
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Figure 15.  Confusion matrix resulting from the initial 

classification tree algorithm. 

The initial thresholds for the classification tree algorithm 

during this effort were created by performing pilot tests on 

the AssetLife system and manually picking thresholds from 

visual inspection of the test data.  During the next effort of 

testing machine learning will be applied to improve the 

accuracy of the status classification algorithms. 

5. DISCUSSION AND CONCLUSION 

The preliminary AssetLife prototype is able to monitor 

environmental/physical effects in simulation testing, and 

track the amount of time spent in storage, active/open storage, 

and transportation.  In addition to tracking the amount of time 

spent in various status states, the system is able to track 

min/max values of asset exposure and record impact events 

that are experienced.  The system will also be capable of 

storing and transferring data wirelessly to an RFID enabled 

data collection device. 

The design approach used to develop the final asset 

monitoring system will be extensible to a wide range of 

platforms and applications.  Accordingly, the hardware is 

designed to be low-profile and amenable to installation on 

different assets without interfering with normal handling 

procedures.  Successful implementation of the sensor system 

will provide maintainers a diagnostic capability into storage 

and handling and give indications as to when and where extra 

precautions could be recommended to minimize variance 

from acceptable conditions.  The AssetLife system is 

designed using a methodology that allows the technology to 

translate to a variety of high value assets, where monitoring 

storage, transportation, and handling could be used to track 

the usage  of products over short or extended periods of time. 
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NOMENCLATURE 

FRAM Ferroelectric Random Access Memory 

MEMS Microelectromechanical system 

NFC Near-Field Communication 

nA Nanoamps 

nm Nanometers 

RFID Radio Frequency Identification 

RM&A Reliability, Maintainability, and Availability 

UV Ultraviolet 

µA Microamps 
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